教师名录
近五年主要科研成果:
一、学术论文:
[1] Yuheng Gu, Shoubo Peng, Yaqin Li, Linlin Gao, Yihong Dong*. FC-HGNN: A heterogeneous graph neural network based on brain functional connectivity for mental disorder identification[J]. Information Fusion, 2025,113:102619. (中科院1区,Top期刊,IF=14.8)
[2] Yaqin Li, Yihong Dong*, Shoubo Peng, Linlin Gao, Yu Xin. ORC-GNN: A Novel open set recognition based on graph neural network for multi-class classification of psychiatric disorders[J]. Information Fusion, 2025,117:102887. (中科院1区,Top期刊,IF=14.8)
[3] Jieyi Yang, Yihong Dong*, Guoqing Li. An Adaptive Dual-channel Multi-modal graph neural network for few-show learning. Knowledge-Based Systems, 112845, 2025. (中科院1区,Top期刊,IF=7.2)
[4] Chang Hu, Yihong Dong*, Shoubo Peng. Multiscale Spectral Augmentation for Graph Contrastive Learning for fMRI Analysis to Diagnose Psychiatric Disease. Knowledge-Based Systems, 2025,314:113175. (中科院1区,Top期刊,IF=7.2)
[5] Jiacheng Pan, Haocai Lin, Yihong Dong*, Yu Wang, Yunxin Ji*. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder. Computers in Biology and Medicine, 2022, 148:105823(中科院2区,IF=7.0)
[6] Chenjian Sun, Ming Jiang*, Linlin Gao, Yu Xin, Yihong Dong*. A novel study for depression detecting using audio signals based on graph neural network[J]. Biomedical Signal Processing and Control, 2024, 88:105675. (中科院2区,IF=4.9)
[7] Yaqin Li, Chenjian Sun, Yihong Dong*. A novel audio-visual multimodal semi-supervised model based on graph neural networks for depression detection[C]. Proceedings of 50th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2025), India, 2025.
[8] Yuheng Gu, Shoubo Peng, Yaqin Li, Yihong Dong*. FCP-GNN: A Novel Population Graph Neural Network Based on Functional Connectivity for Mental Disorders Detection. Proceedings of 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD2024), Taipei, 2024.
[9] Xiangen Jia, Yihong Dong*, Feng Zhu, Yu Xin, Jiangbo Qian. Preference-corrected multimodal graph convolutional recommendation network[J]. Applied Intelligence, 2023, 53:3947-3962.
[10] 杨洁祎,董一鸿*,钱江波. 基于图神经网络的小样本学习方法研究进展. 计算机研究与发展,2024,61(4):856-876.
二、项目课题:
[1] 浙江省自然科学基金/一般项目, LY20F020009, 面向大规模图数据的动态网络表示学习研究, 2020-01 至 2022-12, 9万元, 结题, 排名第一
[2] 宁波市公益性研究计划/重点项目,基于rs-fMRI影像的多分类精神障碍疾病辅助诊断及临床应用研究,2023S023,45万,2023.09-2026.08,在研,排名第一
[3] 宁波市自然科学基金,基于图神经网络的小样本学习关键技术研究,2023J114,2023.06-2025.05,在研,排名第一
[4] 横向(华为技术有限公司),CANN PyTorch模型迁移,2022.10-2022.11,排名第一
[5] 横向(华为技术有限公司),华为昇腾平台模型迁移,2022.08-2023.10,排名第一
[6] 国家科技部重点研发计划,麻精药品成瘾环路机制的交叉频率耦合图谱和筛查系统研究,2023YFC3304202,280万,2023.11-2026.10,在研,排名第五,
[7] 国家自然科学基金/面上项目,关注对象关系的哈希学习相关理论和方法,62271274,2023.01-2026.12,54万,在研,排名第二
[8] 浙江省自然科学基金/重点项目, LZ20F020001, 多源异构大数据哈希学习理论与方法 , 2020-01 至 2023-12, 30万元, 结题,排名第二
三、获奖情况:
1. 2024年,浙江省研究生教育学会,浙江省专业学位研究生优秀实践成果奖,指导教师
2. 2024年,浙江省研究生教育学会,浙江省优秀研究生教学案例奖